# Convert radian / minute to cycle / hour

Learn how to convert 1 radian / minute to cycle / hour step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{radian}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cycle}{hour}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{radian}{second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{radian}{minute}\right) = {\color{rgb(89,182,91)} \dfrac{1.0}{60.0}\left(\dfrac{radian}{second}\right)} = {\color{rgb(89,182,91)} \dfrac{1.0}{60.0}\left(\dfrac{rad}{s}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{cycle}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{π}{1.8 \times 10^{3}}\left(\dfrac{radian}{second}\right)} = {\color{rgb(125,164,120)} \dfrac{π}{1.8 \times 10^{3}}\left(\dfrac{rad}{s}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{radian}{minute}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{cycle}{hour}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{60.0}} \times {\color{rgb(89,182,91)} \left(\dfrac{radian}{second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{1.8 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{radian}{second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.0}{60.0}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{rad}{s}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{1.8 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{rad}{s}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.0}{60.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{rad}{s}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{1.8 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{rad}{s}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{1.0}{60.0} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{1.8 \times 10^{3}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{π}{1.8 \times 10^{3}} = \dfrac{1.0}{60.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.8 \times 10^{3}}{π}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{π}{1.8 \times 10^{3}} \times \dfrac{1.8 \times 10^{3}}{π} = \dfrac{1.0}{60.0} \times \dfrac{1.8 \times 10^{3}}{π}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}} \times {\color{rgb(99,194,222)} \cancel{1.8}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}}}{{\color{rgb(99,194,222)} \cancel{1.8}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{π}}} = \dfrac{1.0 \times 1.8 \times 10^{3}}{60.0 \times π}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.8 \times 10^{3}}{60.0 \times π}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx9.5492965855\approx9.5493$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{radian}{minute}\right)\approx{\color{rgb(20,165,174)} 9.5493}\left(\dfrac{cycle}{hour}\right)$$