# Convert sack to barrel

Learn how to convert 1 sack to barrel step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(sack\right)={\color{rgb(20,165,174)} x}\left(barrel\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(sack\right) = {\color{rgb(89,182,91)} 1.0571721050064 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 1.0571721050064 \times 10^{-1}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(barrel\right) = {\color{rgb(125,164,120)} 0.115628198985075\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 0.115628198985075\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(sack\right)={\color{rgb(20,165,174)} x}\left(barrel\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0571721050064 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.115628198985075}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0571721050064 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.115628198985075} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0571721050064 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.115628198985075} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$1.0571721050064 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 0.115628198985075$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 0.115628198985075 = 1.0571721050064 \times 10^{-1}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{0.115628198985075}\right)$$
$${\color{rgb(20,165,174)} x} \times 0.115628198985075 \times \dfrac{1.0}{0.115628198985075} = 1.0571721050064 \times 10^{-1} \times \dfrac{1.0}{0.115628198985075}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.115628198985075}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.115628198985075}}} = 1.0571721050064 \times 10^{-1} \times \dfrac{1.0}{0.115628198985075}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0571721050064 \times 10^{-1}}{0.115628198985075}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.9142857143\approx9.1429 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(sack\right)\approx{\color{rgb(20,165,174)} 9.1429 \times 10^{-1}}\left(barrel\right)$$