Learn how to convert 1 sextant to radian step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(sextant\right)={\color{rgb(20,165,174)} x}\left(radian\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(radian\right)$$
$$\text{Left side: 1.0 } \left(sextant\right) = {\color{rgb(89,182,91)} \dfrac{π}{3.0}\left(radian\right)} = {\color{rgb(89,182,91)} \dfrac{π}{3.0}\left(rad\right)}$$
$$\text{Right side: 1.0 } \left(radian\right) = {\color{rgb(125,164,120)} 1.0\left(radian\right)} = {\color{rgb(125,164,120)} 1.0\left(rad\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(sextant\right)={\color{rgb(20,165,174)} x}\left(radian\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{3.0}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(radian\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{3.0}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(rad\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{3.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{π}{3.0} = {\color{rgb(20,165,174)} x} \times 1.0$$
$$\text{Simplify}$$
$$\dfrac{π}{3.0} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = \dfrac{π}{3.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx1.0471975512\approx1.0472$$
$$\text{Conversion Equation}$$
$$1.0\left(sextant\right)\approx{\color{rgb(20,165,174)} 1.0472}\left(radian\right)$$