# Convert shaku(尺) to ångström

Learn how to convert 1 shaku(尺) to ångström step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(shaku(尺)\right)={\color{rgb(20,165,174)} x}\left(ångström\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(shaku(尺)\right) = {\color{rgb(89,182,91)} \dfrac{10.0}{33.0}\left(meter\right)} = {\color{rgb(89,182,91)} \dfrac{10.0}{33.0}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(ångström\right) = {\color{rgb(125,164,120)} 10^{-10}\left(meter\right)} = {\color{rgb(125,164,120)} 10^{-10}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(shaku(尺)\right)={\color{rgb(20,165,174)} x}\left(ångström\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{10.0}{33.0}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-10}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{10.0}{33.0}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-10}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{10.0}{33.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-10}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{10.0}{33.0} = {\color{rgb(20,165,174)} x} \times 10^{-10}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-10} = \dfrac{10.0}{33.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-10}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-10} \times \dfrac{1.0}{10^{-10}} = \dfrac{10.0}{33.0} \times \dfrac{1.0}{10^{-10}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-10}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-10}}}} = \dfrac{10.0 \times 1.0}{33.0 \times 10^{-10}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0}{33.0 \times 10^{-10}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-10}}\text{ can be rewritten to }10^{10}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{10} \times 10.0}{33.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0^{11}}{33.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx3030303030.3\approx3.0303 \times 10^{9}$$
$$\text{Conversion Equation}$$
$$1.0\left(shaku(尺)\right)\approx{\color{rgb(20,165,174)} 3.0303 \times 10^{9}}\left(ångström\right)$$