# Convert shed to caballeria

Learn how to convert 1 shed to caballeria step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(shed\right)={\color{rgb(20,165,174)} x}\left(caballeria\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(shed\right) = {\color{rgb(89,182,91)} 10^{-52}\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 10^{-52}\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(caballeria\right) = {\color{rgb(125,164,120)} 4.5 \times 10^{5}\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} 4.5 \times 10^{5}\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(shed\right)={\color{rgb(20,165,174)} x}\left(caballeria\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-52}} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4.5 \times 10^{5}}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-52}} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4.5 \times 10^{5}} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-52}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4.5 \times 10^{5}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-52} = {\color{rgb(20,165,174)} x} \times 4.5 \times 10^{5}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 4.5 \times 10^{5} = 10^{-52}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{4.5 \times 10^{5}}\right)$$
$${\color{rgb(20,165,174)} x} \times 4.5 \times 10^{5} \times \dfrac{1.0}{4.5 \times 10^{5}} = 10^{-52} \times \dfrac{1.0}{4.5 \times 10^{5}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4.5}} \times {\color{rgb(99,194,222)} \cancel{10^{5}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4.5}} \times {\color{rgb(99,194,222)} \cancel{10^{5}}}} = 10^{-52} \times \dfrac{1.0}{4.5 \times 10^{5}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-52}}{4.5 \times 10^{5}}$$
Rewrite equation
$$\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 10^{-52}}{4.5}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-57}}{4.5}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx2.2222222222 \times 10^{-58}\approx2.2222 \times 10^{-58}$$
$$\text{Conversion Equation}$$
$$1.0\left(shed\right)\approx{\color{rgb(20,165,174)} 2.2222 \times 10^{-58}}\left(caballeria\right)$$