# Convert sheet to mark

Learn how to convert 1 sheet to mark step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(sheet\right)={\color{rgb(20,165,174)} x}\left(mark\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(sheet\right) = {\color{rgb(89,182,91)} 6.479891 \times 10^{-4}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 6.479891 \times 10^{-4}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(mark\right) = {\color{rgb(125,164,120)} 0.2488278144\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 0.2488278144\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(sheet\right)={\color{rgb(20,165,174)} x}\left(mark\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 6.479891 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.2488278144}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 6.479891 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.2488278144} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 6.479891 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.2488278144} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$6.479891 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 0.2488278144$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 0.2488278144 = 6.479891 \times 10^{-4}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{0.2488278144}\right)$$
$${\color{rgb(20,165,174)} x} \times 0.2488278144 \times \dfrac{1.0}{0.2488278144} = 6.479891 \times 10^{-4} \times \dfrac{1.0}{0.2488278144}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.2488278144}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.2488278144}}} = 6.479891 \times 10^{-4} \times \dfrac{1.0}{0.2488278144}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{6.479891 \times 10^{-4}}{0.2488278144}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0026041667\approx2.6042 \times 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(sheet\right)\approx{\color{rgb(20,165,174)} 2.6042 \times 10^{-3}}\left(mark\right)$$