# Convert sho(升) to drop

Learn how to convert 1 sho(升) to drop step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(sho(升)\right)={\color{rgb(20,165,174)} x}\left(drop\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(sho(升)\right) = {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(drop\right) = {\color{rgb(125,164,120)} 7.78866844846491 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 7.78866844846491 \times 10^{-8}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(sho(升)\right)={\color{rgb(20,165,174)} x}\left(drop\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 7.78866844846491 \times 10^{-8}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 7.78866844846491 \times 10^{-8}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 7.78866844846491 \times 10^{-8}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2.401}{1.331 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times 7.78866844846491 \times 10^{-8}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 7.78866844846491 \times 10^{-8} = \dfrac{2.401}{1.331 \times 10^{3}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{7.78866844846491 \times 10^{-8}}\right)$$
$${\color{rgb(20,165,174)} x} \times 7.78866844846491 \times 10^{-8} \times \dfrac{1.0}{7.78866844846491 \times 10^{-8}} = \dfrac{2.401}{1.331 \times 10^{3}} \times \dfrac{1.0}{7.78866844846491 \times 10^{-8}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{7.78866844846491}} \times {\color{rgb(99,194,222)} \cancel{10^{-8}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{7.78866844846491}} \times {\color{rgb(99,194,222)} \cancel{10^{-8}}}} = \dfrac{2.401 \times 1.0}{1.331 \times {\color{rgb(255,204,153)} \cancel{10^{3}}} \times 7.78866844846491 \times {\color{rgb(255,204,153)} \cancelto{10^{-5}}{10^{-8}}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.401}{1.331 \times 7.78866844846491 \times 10^{-5}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-5}}\text{ can be rewritten to }10^{5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{5} \times 2.401}{1.331 \times 7.78866844846491}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx23160.657677\approx2.3161 \times 10^{4}$$
$$\text{Conversion Equation}$$
$$1.0\left(sho(升)\right)\approx{\color{rgb(20,165,174)} 2.3161 \times 10^{4}}\left(drop\right)$$