# Convert sho(升) to last

Learn how to convert 1 sho(升) to last step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(sho(升)\right)={\color{rgb(20,165,174)} x}\left(last\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(sho(升)\right) = {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(last\right) = {\color{rgb(125,164,120)} 2.9094976\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.9094976\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(sho(升)\right)={\color{rgb(20,165,174)} x}\left(last\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.9094976}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.9094976} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.401}{1.331 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.9094976} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2.401}{1.331 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times 2.9094976$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.9094976 = \dfrac{2.401}{1.331 \times 10^{3}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.9094976}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.9094976 \times \dfrac{1.0}{2.9094976} = \dfrac{2.401}{1.331 \times 10^{3}} \times \dfrac{1.0}{2.9094976}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.9094976}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.9094976}}} = \dfrac{2.401 \times 1.0}{1.331 \times 10^{3} \times 2.9094976}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.401}{1.331 \times 10^{3} \times 2.9094976}$$
Rewrite equation
$$\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-3} \times 2.401}{1.331 \times 2.9094976}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0006200063\approx6.2001 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(sho(升)\right)\approx{\color{rgb(20,165,174)} 6.2001 \times 10^{-4}}\left(last\right)$$