# Convert teaspoon to dessertspoon

Learn how to convert 1 teaspoon to dessertspoon step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(teaspoon\right)={\color{rgb(20,165,174)} x}\left(dessertspoon\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(teaspoon\right) = {\color{rgb(89,182,91)} 5.0 \times 10^{-6}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 5.0 \times 10^{-6}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(dessertspoon\right) = {\color{rgb(125,164,120)} 1.18387760416667 \times 10^{-5}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.18387760416667 \times 10^{-5}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(teaspoon\right)={\color{rgb(20,165,174)} x}\left(dessertspoon\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{-6}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.18387760416667 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 5.0 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.18387760416667 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{-6}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.18387760416667 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$5.0 \times 10^{-6} = {\color{rgb(20,165,174)} x} \times 1.18387760416667 \times 10^{-5}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$5.0 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-6}}} = {\color{rgb(20,165,174)} x} \times 1.18387760416667 \times {\color{rgb(255,204,153)} \cancel{10^{-5}}}$$
$$\text{Simplify}$$
$$5.0 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 1.18387760416667$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.18387760416667 = 5.0 \times 10^{-1}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.18387760416667}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.18387760416667 \times \dfrac{1.0}{1.18387760416667} = 5.0 \times 10^{-1} \times \dfrac{1.0}{1.18387760416667}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.18387760416667}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.18387760416667}}} = 5.0 \times 10^{-1} \times \dfrac{1.0}{1.18387760416667}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{5.0 \times 10^{-1}}{1.18387760416667}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.4223409567\approx4.2234 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(teaspoon\right)\approx{\color{rgb(20,165,174)} 4.2234 \times 10^{-1}}\left(dessertspoon\right)$$