# Convert ton / cubic yard to pound / fluid-ounce

Learn how to convert 1 ton / cubic yard to pound / fluid-ounce step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{ton}{cubic \text{ } yard}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{pound}{fluid-ounce}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{ton}{cubic \text{ } yard}\right) = {\color{rgb(89,182,91)} \dfrac{10^{4}}{7.64554857984}\left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)} = {\color{rgb(89,182,91)} \dfrac{10^{4}}{7.64554857984}\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{pound}{fluid-ounce}\right) = {\color{rgb(125,164,120)} \dfrac{45359.237}{2.84130625}\left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)} = {\color{rgb(125,164,120)} \dfrac{45359.237}{2.84130625}\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{ton}{cubic \text{ } yard}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{pound}{fluid-ounce}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{10^{4}}{7.64554857984}} \times {\color{rgb(89,182,91)} \left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{45359.237}{2.84130625}}} \times {\color{rgb(125,164,120)} \left(\dfrac{{\color{rgb(230,179,255)} kilo}gram}{cubic \text{ } meter}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{10^{4}}{7.64554857984}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{45359.237}{2.84130625}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{10^{4}}{7.64554857984}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{45359.237}{2.84130625}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{{\color{rgb(230,179,255)} k}g}{m^{3}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{10^{4}}{7.64554857984} = {\color{rgb(20,165,174)} x} \times \dfrac{45359.237}{2.84130625}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{45359.237}{2.84130625} = \dfrac{10^{4}}{7.64554857984}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{2.84130625}{45359.237}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{45359.237}{2.84130625} \times \dfrac{2.84130625}{45359.237} = \dfrac{10^{4}}{7.64554857984} \times \dfrac{2.84130625}{45359.237}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{45359.237}} \times {\color{rgb(99,194,222)} \cancel{2.84130625}}}{{\color{rgb(99,194,222)} \cancel{2.84130625}} \times {\color{rgb(255,204,153)} \cancel{45359.237}}} = \dfrac{10^{4} \times 2.84130625}{7.64554857984 \times 45359.237}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{4} \times 2.84130625}{7.64554857984 \times 45359.237}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0819301319\approx8.193 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{ton}{cubic \text{ } yard}\right)\approx{\color{rgb(20,165,174)} 8.193 \times 10^{-2}}\left(\dfrac{pound}{fluid-ounce}\right)$$