# Convert ton to rin(厘)

Learn how to convert 1 ton to rin(厘) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(ton\right)={\color{rgb(20,165,174)} x}\left(rin(厘)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(ton\right) = {\color{rgb(89,182,91)} 10^{3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 10^{3}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(rin(厘)\right) = {\color{rgb(125,164,120)} \dfrac{3.0}{8.0 \times 10^{4}}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} \dfrac{3.0}{8.0 \times 10^{4}}\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(ton\right)={\color{rgb(20,165,174)} x}\left(rin(厘)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{3}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{3.0}{8.0 \times 10^{4}}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{3}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{3.0}{8.0 \times 10^{4}}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{3}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{3.0}{8.0 \times 10^{4}}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$10^{3} = {\color{rgb(20,165,174)} x} \times \dfrac{3.0}{8.0 \times 10^{4}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{3.0}{8.0 \times 10^{4}} = 10^{3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{8.0 \times 10^{4}}{3.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{3.0}{8.0 \times 10^{4}} \times \dfrac{8.0 \times 10^{4}}{3.0} = 10^{3} \times \dfrac{8.0 \times 10^{4}}{3.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{3.0}} \times {\color{rgb(99,194,222)} \cancel{8.0}} \times {\color{rgb(166,218,227)} \cancel{10^{4}}}}{{\color{rgb(99,194,222)} \cancel{8.0}} \times {\color{rgb(166,218,227)} \cancel{10^{4}}} \times {\color{rgb(255,204,153)} \cancel{3.0}}} = 10^{3} \times \dfrac{8.0 \times 10^{4}}{3.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{3} \times 8.0 \times 10^{4}}{3.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx26666666.667\approx2.6667 \times 10^{7}$$
$$\text{Conversion Equation}$$
$$1.0\left(ton\right)\approx{\color{rgb(20,165,174)} 2.6667 \times 10^{7}}\left(rin(厘)\right)$$