# Convert water ton to quarter

Learn how to convert 1 water ton to quarter step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(water \text{ } ton\right)={\color{rgb(20,165,174)} x}\left(quarter\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(water \text{ } ton\right) = {\color{rgb(89,182,91)} 1.01832416\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 1.01832416\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(quarter\right) = {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(water \text{ } ton\right)={\color{rgb(20,165,174)} x}\left(quarter\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.01832416} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.01832416} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.01832416} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.9094976 \times 10^{-1}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$1.01832416 = {\color{rgb(20,165,174)} x} \times 2.9094976 \times 10^{-1}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.9094976 \times 10^{-1} = 1.01832416$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.9094976 \times 10^{-1}}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.9094976 \times 10^{-1} \times \dfrac{1.0}{2.9094976 \times 10^{-1}} = 1.01832416 \times \dfrac{1.0}{2.9094976 \times 10^{-1}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.9094976}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.9094976}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}}} = 1.01832416 \times \dfrac{1.0}{2.9094976 \times 10^{-1}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.01832416}{2.9094976 \times 10^{-1}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0 \times 1.01832416}{2.9094976}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 3.5$$
$$\text{Conversion Equation}$$
$$1.0\left(water \text{ } ton\right) = {\color{rgb(20,165,174)} 3.5}\left(quarter\right)$$