Learn how to convert 1 yin(引) to goad step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(yin(引)\right)={\color{rgb(20,165,174)} x}\left(goad\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(yin(引)\right) = {\color{rgb(89,182,91)} \dfrac{10^{2}}{3.0}\left(meter\right)} = {\color{rgb(89,182,91)} \dfrac{10^{2}}{3.0}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(goad\right) = {\color{rgb(125,164,120)} 1.3716\left(meter\right)} = {\color{rgb(125,164,120)} 1.3716\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(yin(引)\right)={\color{rgb(20,165,174)} x}\left(goad\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{10^{2}}{3.0}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.3716}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{10^{2}}{3.0}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.3716} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{10^{2}}{3.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.3716} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{10^{2}}{3.0} = {\color{rgb(20,165,174)} x} \times 1.3716$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.3716 = \dfrac{10^{2}}{3.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.3716}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.3716 \times \dfrac{1.0}{1.3716} = \dfrac{10^{2}}{3.0} \times \dfrac{1.0}{1.3716}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.3716}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.3716}}} = \dfrac{10^{2} \times 1.0}{3.0 \times 1.3716}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{2}}{3.0 \times 1.3716}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx24.302517741\approx24.3025$$
$$\text{Conversion Equation}$$
$$1.0\left(yin(引)\right)\approx{\color{rgb(20,165,174)} 24.3025}\left(goad\right)$$