Convert ampere • minute to franklin

Learn how to convert 1 ampere • minute to franklin step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(ampere \times minute\right)={\color{rgb(20,165,174)} x}\left(franklin\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(coulomb\right)$$
$$\text{Left side: 1.0 } \left(ampere \times minute\right) = {\color{rgb(89,182,91)} 60.0\left(coulomb\right)} = {\color{rgb(89,182,91)} 60.0\left(C\right)}$$
$$\text{Right side: 1.0 } \left(franklin\right) = {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}\left(coulomb\right)} = {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}\left(C\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(ampere \times minute\right)={\color{rgb(20,165,174)} x}\left(franklin\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 60.0} \times {\color{rgb(89,182,91)} \left(coulomb\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}}} \times {\color{rgb(125,164,120)} \left(coulomb\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 60.0} \cdot {\color{rgb(89,182,91)} \left(C\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}} \cdot {\color{rgb(125,164,120)} \left(C\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 60.0} \cdot {\color{rgb(89,182,91)} \cancel{\left(C\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}} \times {\color{rgb(125,164,120)} \cancel{\left(C\right)}}$$
$$\text{Conversion Equation}$$
$$60.0 = {\color{rgb(20,165,174)} x} \times 3.33564 \times 10^{-10}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3.33564 \times 10^{-10} = 60.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3.33564 \times 10^{-10}}\right)$$
$${\color{rgb(20,165,174)} x} \times 3.33564 \times 10^{-10} \times \dfrac{1.0}{3.33564 \times 10^{-10}} = 60.0 \times \dfrac{1.0}{3.33564 \times 10^{-10}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.33564}} \times {\color{rgb(99,194,222)} \cancel{10^{-10}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.33564}} \times {\color{rgb(99,194,222)} \cancel{10^{-10}}}} = 60.0 \times \dfrac{1.0}{3.33564 \times 10^{-10}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{60.0}{3.33564 \times 10^{-10}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-10}}\text{ can be rewritten to }10^{10}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{10} \times 60.0}{3.33564}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx1.7987552614 \times 10^{11}\approx1.7988 \times 10^{11}$$
$$\text{Conversion Equation}$$
$$1.0\left(ampere \times minute\right)\approx{\color{rgb(20,165,174)} 1.7988 \times 10^{11}}\left(franklin\right)$$