# Convert cubic yard to drop

Learn how to convert 1 cubic yard to drop step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(cubic \text{ } yard\right)={\color{rgb(20,165,174)} x}\left(drop\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(cubic \text{ } yard\right) = {\color{rgb(89,182,91)} 7.64554857984 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 7.64554857984 \times 10^{-1}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(drop\right) = {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(cubic \text{ } yard\right)={\color{rgb(20,165,174)} x}\left(drop\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 7.64554857984 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 7.64554857984 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 7.64554857984 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 8.21486932291667 \times 10^{-8}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$7.64554857984 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-8}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$7.64554857984 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times {\color{rgb(255,204,153)} \cancelto{10^{-7}}{10^{-8}}}$$
$$\text{Simplify}$$
$$7.64554857984 = {\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-7}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-7} = 7.64554857984$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{8.21486932291667 \times 10^{-7}}\right)$$
$${\color{rgb(20,165,174)} x} \times 8.21486932291667 \times 10^{-7} \times \dfrac{1.0}{8.21486932291667 \times 10^{-7}} = 7.64554857984 \times \dfrac{1.0}{8.21486932291667 \times 10^{-7}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{8.21486932291667}} \times {\color{rgb(99,194,222)} \cancel{10^{-7}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{8.21486932291667}} \times {\color{rgb(99,194,222)} \cancel{10^{-7}}}} = 7.64554857984 \times \dfrac{1.0}{8.21486932291667 \times 10^{-7}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{7.64554857984}{8.21486932291667 \times 10^{-7}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-7}}\text{ can be rewritten to }10^{7}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{7} \times 7.64554857984}{8.21486932291667}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx9306963.1169\approx9.307 \times 10^{6}$$
$$\text{Conversion Equation}$$
$$1.0\left(cubic \text{ } yard\right)\approx{\color{rgb(20,165,174)} 9.307 \times 10^{6}}\left(drop\right)$$