# Convert pebi to kibi

Learn how to convert 1 pebi to kibi step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(pebi\right)={\color{rgb(20,165,174)} x}\left(kibi\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } pebi \text{ } is \text{ } 2.0^{50}$$
$$The \text{ } value \text{ } of \text{ } kibi \text{ } is \text{ } 2.0^{10}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(pebi\right)={\color{rgb(20,165,174)} x}\left(kibi\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.0^{50}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.0^{10}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.0^{50}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.0^{10}}$$
$$\text{Conversion Equation}$$
$$2.0^{50} = {\color{rgb(20,165,174)} x} \times 2.0^{10}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancelto{2^{40}}{2.0^{50}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.0^{10}}}$$
$$\text{Simplify}$$
$$2^{40} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 2^{40}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 1.0995116278 \times 10^{12}\approx1.0995 \times 10^{12}$$
$$\text{Conversion Equation}$$
$$1.0\left(pebi\right)\approx{\color{rgb(20,165,174)} 1.0995 \times 10^{12}}\left(kibi\right)$$