Convert one to exbi

Learn how to convert 1 one to exbi step by step.

Calculation Breakdown

Set up the equation
$$1.0={\color{rgb(20,165,174)} x}\left(exbi\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } exbi \text{ } is \text{ } 2.0^{60}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0={\color{rgb(20,165,174)} x}\left(exbi\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.0} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.0^{60}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.0} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.0^{60}}$$
$$\text{Conversion Equation}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 2.0^{60}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 2.0^{60}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.0^{60} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.0^{60}}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.0^{60} \times \dfrac{1.0}{2.0^{60}} = 1.0 \times \dfrac{1.0}{2.0^{60}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.0^{60}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.0^{60}}}} = 1.0 \times \dfrac{1.0}{2.0^{60}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{2.0^{60}}$$
Rewrite equation
$$\dfrac{1.0}{2.0^{60}}\text{ can be rewritten to }2.0^{-60}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 2.0^{-60}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx8.67361738 \times 10^{-19}\approx8.6736 \times 10^{-19}$$
$$\text{Conversion Equation}$$
$$1.0\approx{\color{rgb(20,165,174)} 8.6736 \times 10^{-19}}\left(exbi\right)$$