# Convert statampere to ampere

Learn how to convert 1 statampere to ampere step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(statampere\right)={\color{rgb(20,165,174)} x}\left(ampere\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(ampere\right)$$
$$\text{Left side: 1.0 } \left(statampere\right) = {\color{rgb(89,182,91)} 3.3356 \times 10^{-10}\left(ampere\right)} = {\color{rgb(89,182,91)} 3.3356 \times 10^{-10}\left(A\right)}$$
$$\text{Right side: 1.0 } \left(ampere\right) = {\color{rgb(125,164,120)} 1.0\left(ampere\right)} = {\color{rgb(125,164,120)} 1.0\left(A\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(statampere\right)={\color{rgb(20,165,174)} x}\left(ampere\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.3356 \times 10^{-10}} \times {\color{rgb(89,182,91)} \left(ampere\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(ampere\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.3356 \times 10^{-10}} \cdot {\color{rgb(89,182,91)} \left(A\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(A\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.3356 \times 10^{-10}} \cdot {\color{rgb(89,182,91)} \cancel{\left(A\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(A\right)}}$$
$$\text{Conversion Equation}$$
$$3.3356 \times 10^{-10} = {\color{rgb(20,165,174)} x} \times 1.0$$
$$\text{Simplify}$$
$$3.3356 \times 10^{-10} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 3.3356 \times 10^{-10}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 3.3356 \times 10^{-10}$$
$$\text{Conversion Equation}$$
$$1.0\left(statampere\right) = {\color{rgb(20,165,174)} 3.3356 \times 10^{-10}}\left(ampere\right)$$