# Convert gibi to exbi

Learn how to convert 1 gibi to exbi step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(gibi\right)={\color{rgb(20,165,174)} x}\left(exbi\right)$$
Define the prefix value(s)
$$The \text{ } value \text{ } of \text{ } gibi \text{ } is \text{ } 2.0^{30}$$
$$The \text{ } value \text{ } of \text{ } exbi \text{ } is \text{ } 2.0^{60}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(gibi\right)={\color{rgb(20,165,174)} x}\left(exbi\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.0^{30}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.0^{60}}}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.0^{30}} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.0^{60}}$$
$$\text{Conversion Equation}$$
$$2.0^{30} = {\color{rgb(20,165,174)} x} \times 2.0^{60}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{2.0^{30}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancelto{2^{30}}{2.0^{60}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 2^{30}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2^{30} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2^{30}}\right)$$
$${\color{rgb(20,165,174)} x} \times 2^{30} \times \dfrac{1.0}{2^{30}} = \times \dfrac{1.0}{2^{30}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2^{30}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2^{30}}}} = \dfrac{1.0}{2^{30}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{2^{30}}$$
Rewrite equation
$$\dfrac{1.0}{2^{30}}\text{ can be rewritten to }2^{-30}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 2^{-30}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000000009\approx9.3132 \times 10^{-10}$$
$$\text{Conversion Equation}$$
$$1.0\left(gibi\right)\approx{\color{rgb(20,165,174)} 9.3132 \times 10^{-10}}\left(exbi\right)$$